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Abstract

A quasi-line graph is a graph in which the neighbourhood of any vertex
can be covered by two cliques; every line graph is a quasi-line graph. Reed
conjectured that for any graph G, χ(G) ≤ d1

2(∆(G) + 1 + ω(G))e [13]. We
prove that the conjecture holds if G is a quasi-line graph, extending a result
of King, Reed and Vetta, who proved the conjecture for line graphs [8], and
improving the bound of χ(G) ≤ 3

2ω(G) given by Chudnovsky and Ovetsky
[2].

1 Introduction and Preliminaries

Let G be a finite simple graph. A proper colouring (often called just a colouring),
is an assignment of a colour to each vertex such that no two adjacent vertices are
assigned the same colour. The chromatic number of G, denoted χ(G), is the least
number of colours required to colour the vertex set of G properly. A clique in G is
a set of pairwise adjacent vertices; the size of the largest clique in G is called the
clique number of G and denoted ω(G). The degree of a vertex in G is the number of
vertices adjacent to it; the maximum degree over all vertices in the graph is denoted
∆(G). We will sometimes denote χ(G), ω(G), and ∆(G) by χ, ω, and ∆ respectively
when the graph in question is clear from the context.

For any graph G, χ(G) ≥ ω(G). To see this, note that in a proper colouring
of G each vertex in a given clique must get a different colour. On the other hand,
it is easy to see that G can be coloured greedily, one vertex at a time, from a set
of ∆(G) + 1 colours. In [13], Reed considered the problem of bounding χ(G) from
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above by convex combinations of the trivial lower bound ω(G) and the trivial upper
bound ∆(G) + 1. He proved:

Theorem 1 (Reed). There is an absolute constant a > 0 such that for any graph
G, χ(G) ≤ daω(G) + (1− a)(∆(G) + 1)e.

Continuing in this vein, Reed conjectured that a can be as high as 1/2. For a
graph G we use γ(G) to denote d1

2
(∆(G) + 1 + ω(G))e.

Conjecture 2 (Reed). For any graph G, χ(G) ≤ γ(G).

This conjecture seems very difficult to prove for all graphs, but it is not so bad
for certain classes. There are many classes of graphs, for example perfect graphs, for
which the conjecture obviously holds (a perfect graph is one in which any induced
subgraph has equal clique number and chromatic number). Given a multigraph H,
the line graph L(H) of H is the graph with vertex set E(H) in which two vertices
are adjacent precisely if their corresponding edges in H share an endpoint. A graph
G is a line graph precisely if there is a multigraph H such that G = L(H). King,
Reed and Vetta proved that the conjecture holds for line graphs [8].

Theorem 3 (King, Reed and Vetta). For any line graph G = L(H), χ(G) ≤ γ(G),
and G can be γ(G)-coloured in O(|V (G)|7/2) time.

Remark: The running time of the algorithm given by King, Reed and Vetta is
not explicitly stated in the paper. The algorithm appeals to an O(|E(H)| · |V (H)|)
edge colouring algorithm of Nishizeki and Kashiwagi [12] in one case and removes
a matching from the base graph in the other case; the matching can be found in
O(|V (H)|5/2) time and its removal reduces the maximum degree of H. The result
is an algorithm that gives a γ(G) edge colouring of H, hence a γ(G) vertex colour-
ing of G, in O(|V (H)|7/2 + |E(H)|) time; it also runs in O(|V (G)|7/2) time since
|E(H)| = |V (G)| and |V (H)| = O(|E(H)|).

A vertex is simplicial if its neighbourhood induces a clique, and is bisimplicial if
its neighbourhood can be covered by two cliques. A quasi-line graph is a graph in
which every vertex is bisimplicial; note that every line graph is a quasi-line graph.
The main result of this paper is the proof of Conjecture 2 for quasi-line graphs:

Theorem 4. For any quasi-line graph G, χ(G) ≤ γ(G).

We prove in Section 6 that any quasi-line graph G can be γ(G)-coloured in
polynomial time, specifically O(n2m2) if G has n vertices and m edges.
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Shannon’s Theorem states that for any line graph G, χ(G) ≤ 3
2
ω(G) [15]. Chud-

novsky and Ovetsky extended this result, proving that for any quasi-line graph G,
χ(G) ≤ 3

2
ω(G) [2]. In a quasi-line graph G, ∆(G) ≤ 2ω(G) − 2. This implies that

d1
2
(∆(G) + 1 + ω(G))e ≤ 3

2
ω(G), so our result is stronger than the Chudnovsky-

Ovetsky bound. The Chudnovsky-Ovetsky proof relies on a form of induction based
on Seymour and Chudnovsky’s structure theorem for quasi-line graphs (see [3]). To
a large extent we use the same types of reductions in this paper as do Chudnovsky
and Ovetsky in [2]. What makes things more difficult in this paper, generally speak-
ing, is the maintenance of three invariants (ω, ∆, and χ) in our work rather than
just two (ω and χ). Furthermore, we explicitly provide efficient algorithms which
yield the desired colourings, while they do not.

We close this section with some terminology and notation. Given a graph G
and a set S ⊆ V (G), we use G[S] to denote the subgraph of G induced by S. For
a vertex v and sets S and R of vertices, we denote N(v) ∩ S by NS(v), we denote
|NS(v)| by dS(v), and we denote maxv∈R{dS(v)} by ∆S(R). Given two (usually
disjoint) vertex sets S and R, the act of joining S to R or making S complete to
R consists of adding to the graph every possible edge with one endpoint in S and
the other in R. For a colouring c of a graph G and a set S ⊆ V (G), we use c(S) to
denote the set of colours used on S.

2 A Proof Sketch

In this section we state the main lemmas we need and show how they can be com-
bined to prove Theorem 4. In order to do so, we first need to discuss some special
classes of quasi-line graphs and some special types of decompositions of graphs.

A co-bipartite graph is a graph whose complement is bipartite, meaning precisely
that its vertices can be covered by two cliques. A fundamental result of König [9]
states that in a bipartite graph the size of a maximum matching and the size of a
minimum vertex cover are equal – it follows that any co-bipartite graph has equal
clique number and chromatic number. Since any induced subgraph of a co-bipartite
graph is co-bipartite, every co-bipartite graph is perfect. Notice that a vertex v of
a graph G is bisimplicial precisely if G[N(v)] is co-bipartite. Results of Hopcroft
and Karp provide an O(n5/2)-time algorithm for optimally colouring a co-bipartite
graph and for finding a maximum clique in a co-bipartite graph [7].

A linear interval representation of a graph G = (V, E) consists of a point on the
real number line for each vertex, along with a set of intervals such that two vertices
u and v of the graph are adjacent precisely if there is an interval containing both
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points associated with the vertices. Obviously in a representation with the fewest
number of intervals, none contains another. A linear interval graph is a graph for
which there is a linear interval representation. These graphs can be both recognized
and represented in linear time [6]. Linear interval graphs can be ω-coloured in linear
time by colouring the vertices greedily, moving from left to right along the real line.

A circular interval representation of a graph G = (V, E) consists of a point on
the boundary of the unit circle for each vertex, along with a set of intervals on the
boundary of the unit circle such that two vertices of G are adjacent precisely if there
is an interval containing both points associated with the vertices (again we assume
no interval contains another). A circular interval graph is a graph for which there
is a circular interval representation. As with linear interval graphs, circular interval
graphs can be recognized and represented in linear time [6]. It is easy to prove that
Conjecture 2 holds for circular interval graphs:

Lemma 5. For any circular interval graph G, χ(G) ≤ γ(G), and G can be γ(G)-
coloured in O(n3/2) time.

Proof. Molloy and Reed proved in [10] that for any graph G, the fractional chromatic
number χf (G) is at most 1

2
(∆(G)+1+ω(G)). Niessen and Kind proved that for any

circular interval graph G, χ(G) ≤ dχf (G)e [11]. Further, Shih and Hsu, improving
the analysis of an algorithm developed by Teng and Tucker, obtain an O(n3/2)-time
algorithm for χ(G)-colouring a circular interval graph [16]. The lemma follows.

Henceforth, when we are given a circular (resp. linear) interval graph on n ver-
tices we will assume that the vertices are labeled v1, v2, . . . , vn in clockwise (resp.
left-to-right, i.e. ascending) order. When we say that we take a stable set greedily
from left to right, we take the leftmost vertex and move from left to right, adding a
vertex if it has no neighbour in the stable set.

We say that a pair of disjoint cliques (A, B) form a homogeneous pair of cliques
if |A|, |B| ≥ 2, |A| + |B| < n, and for any vertex v not in A ∪ B, v sees all or none
of |A| and all or none of |B|. If G[A ∪ B] contains an induced C4, then (A, B) is a
nontrivial homogeneous pair of cliques, otherwise it is a trivial homogeneous pair of
cliques. Homogeneous pairs were first defined by Chvátal and Sbihi in a paper on
bull-free perfect graphs [4]; this work was later built upon by Maffray and Reed to
obtain a characterization of claw-free perfect graphs [14].

A 2-join in a graph consists of four disjoint (possibly empty) sets of vertices
Xi, Yi, i ∈ {1, 2} and a partitioning of the graph’s vertex set into V1 and V2 such
that Xi ∪ Yi ⊆ Vi for i ∈ {1, 2} and an edge between V1 and V2 exists precisely if
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the endpoints are both in X1 ∪ X2 or they are both in Y1 ∪ Y2. We denote the 2-
join by ((X1, Y1), (X2, Y2)); the partitioning (V1, V2) is implicit in a connected graph
and we denote the induced subgraphs G[V1] and G[V2] by G1 and G2 respectively.
Cornuéjols and Cunningham introduced 2-joins as a special case of 2-amalgams [5].

We modify the notion of a 2-join, defining an interval 2-join in the same way
as a 2-join except we allow X1 ∩ Y1 and X2 ∩ Y2 to be nonempty and we insist
first that Xi and Yi are cliques for i ∈ {1, 2} and second that there be a linear
interval representation of G2 with X2 and Y2 at the extreme left and right of the
representation, respectively. We say that an interval 2-join is trivial if V2 = X2 = Y2,
and we say that a nontrivial interval 2-join is canonical if X2 ∩ Y2 is empty. Given
a nontrivial interval 2-join ((X1, Y1), (X2, Y2)) where C = X2 ∩ Y2, observe that
((X1 ∪ C, Y1 ∪ C), (X2 \ C, Y2 \ C)) is a canonical interval 2-join.

With the preceding machinery in hand, we are now in a position to state the main
lemmas. The first is a result that follows from a structure theorem of Chudnovsky
and Seymour [3], which we will discuss in Section 5.

Lemma 6. Every quasi-line graph which is not a line graph or a circular interval
graph either contains a nontrivial homogeneous pair of cliques or admits a nontrivial
interval 2-join.

Complementing this are two results on the structure of a minimum counterex-
ample to the main theorem.

Lemma 7. Let G be a counterexample to Theorem 4 on a minimum number of
vertices and subject to that containing a minimum number of edges. Then G contains
no nontrivial homogeneous pair of cliques.

Lemma 8. Let G be a counterexample to Theorem 4 on a minimum number of
vertices and subject to that containing a minimum number of edges. Then G does
not admit a nontrivial interval 2-join.

Given these three lemmas, proving the main theorem comes down to proving
Conjecture 2 for line graphs (already done in [8]) and circular interval graphs (al-
ready done in this section).

3 Dealing With Homogeneous Pairs

In this section we prove Lemma 7, which states that a minimum counterexample to
Theorem 4 contains no nontrivial homogeneous pair of cliques. We actually prove
an algorithmic variant of this result.
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Lemma 9. Let G be a quasi-line graph on n vertices containing a nontrivial homo-
geneous pair of cliques (A, B). In O(n5/2) time we can find a proper subgraph H of
G such that χ(H) = χ(G), and such that given a k-colouring of H we can find a
k-colouring of G in O(n5/2) time.

Before proving this lemma, let us simply point out that it implies Lemma 7
because if G is a counterexample to Theorem 4 then H is a smaller counterexample.

Proof of Lemma 9. Let X be a maximum clique in G[A ∪ B]; we can find X in
O(n5/2) time as mentioned in Section 2. Denote A \ X and B \ X by A′ and B′

respectively. We construct H from G by removing all edges between A′ and B and
all edges between B′ and A. H is a proper subgraph of G because G[A∪B] contains
an induced C4 while H[A ∪ B] does not. Note that both G[A ∪ B] and H[A ∪ B]
are cobipartite and have maximum clique size |X|, so we can |X|-colour them in
O(|A ∪B|5/2) time.

We must show that H is quasi-line. Suppose a vertex v is not bisimplicial in
H and let (S, T ) be a partitioning of NG(v) into two cliques. If v has a neighbour
w ∈ S \ (A ∪B) that sees A but not B, then B ⊆ T and thus S ∪A and T \A are
two cliques covering NH(v) in H. By symmetry we can assume that if no such w
exists then all of NH(v) \ (A∪B) sees A∪B, therefore (S ∪A) \B and (T ∪B) \A
are two cliques covering NH(v) in H. Therefore H is quasi-line.

Let cH be a proper colouring of H using k ≥ χ(H) colours. Since (A, B) is a
homogeneous pair, to construct a k-colouring of G, it is enough to find a colouring
of G[A∪B] that uses the same set of colours as cH on A and on B. We can do this
in O(n5/2) time because the number of colours which appear on both A and B in
the colouring of H is at most the maximum size of a matching in H̄, which is the
same as the size of a maximum matching in Ḡ, i.e. |(A ∪B)−X|.

As we will later be pressed to detect a nontrivial homogeneous pair of cliques
in polynomial time, we close the section by describing how to do so. Since such a
pair contains a 4-hole, we proceed by checking, for every edge contained in a 4-hole,
whether or not there is a homogeneous pair of cliques such that this edge is in one
of the cliques.

We consider any edge a1a2 appearing in an induced C4; whether or not an edge
is in a C4 can be determined in O(m) time. We then iteratively grow cliques Ai

and Bi such that if there is a homogeneous pair of cliques (A, B) with a1, a2 ∈ A,
then Ai ⊆ A and Bi ⊆ B. Observe that if b1b2 is an edge and G[{a1, a2, b1, b2}] is
a C4 then b1 and b2 must be in B and so if such an (A, B) exists it is a nontrivial
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homogeneous pair of cliques. Let A0 = {a1, a2} and let B0 = ∅. For t = 1, 2, . . . n−2
we do the following.

1. Search for a vertex v not in At−1∪Bt−1 that sees some but not all of At−1 (resp.
Bt−1) – it must be in B (resp. A), so let Bt = Bt−1∪{v} (resp. At = At−1∪{v})
and increment t. If there is no such v then (At−1, Bt−1) form a nontrivial
homogeneous pair of cliques; return this fact and terminate.

2. If At and Bt are not both cliques or t = n − 2, terminate. A and B do not
exist.

When building (A, B) we only add a vertex to the homogeneous pair if it cannot
be outside the pair, hence we never face the possibility of putting an unnecessary
vertex in A∪B. It follows that if our method fails there is no homogeneous pair of
cliques containing A0. The method is clearly polytime: we can construct (At, Bt)
from (At−1, Bt−1) in O(m) time, and there are O(m) possible edges to check, so
the total running time is at most O(nm2). However, by taking a little care when
growing our cliques, we can determine whether or not there is a vertex that needs
to be put into A or B without examining any edge or non-edge more than once
throughout the whole run for a given A0. Hence we can find a minimal nontrivial
homogeneous pair of cliques, or determine that there is none, in O(n2m) time.

4 Dealing With Interval 2-joins

In this section we prove Lemma 8, addressing the case in which G contains an
interval 2-join. We need to colour the linear interval graph G2 whilst ensuring our
colouring can be combined with our colouring of G1.

At this point some motivation for our method is in order. Suppose a graph F is
the result of a clique sum of two graphs F1 and F2. That is, F is reached from F1 and
F2 by taking a clique of the same size in each graph and identifying them. Suppose
further that we can easily colour F1 and F2 with c1 and c2 colours respectively.
Then we can (max{c1, c2})-colour F by permuting the colour classes in one of the
colourings and taking the clique sum of the two coloured graphs; this clique sum will
provide a proper colouring of F . This idea is relevant to our situation in two ways.
First, if some Xi or Yi is empty then our 2-join amounts to a clique cutset and G2 is
a linear interval graph. In this case we can γ(G1)-colour G1 in polytime and easily
extend the colouring to a γ(G)-colouring of G. Second, we use a generalization of
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this idea to prove Lemma 10, dealing with some cases by pasting together colourings
on sets that are not necessarily cliques.

Before stating the lemma we give some notation. Given G yielding a canonical
interval 2-join ((X1, Y1), (X2, Y2)) let H2 denote G[V2 ∪ X1 ∪ Y1]. Define ω′(H2) as
the size of the largest clique in H2 not intersecting both X1 \ Y1 and Y1 \ X1 and
define γ′(H2) as d1

2
(∆G(V2 ∪ X1 ∪ Y1) + 1 + ω′(H2))e, noting that this invariant is

at most γ(G). Observe that we can compute ω′(H2) in O(m) time since a clique
defining this invariant will have size |X1 ∪X2|, |Y1 ∪ Y2|, |X1 ∩ Y1|+ ω(G[X2 ∪ Y2]),
or ω(G2).

Recall that we consider X2 to be at the extreme left of G2 and Y2 to be on the ex-
treme right. Lemma 8 follows easily from the following lemma in the same way that
Lemma 7 follows from Lemma 9 in the previous section since max{γ(G1), γ

′(H2)} ≤
γ(G).

Lemma 10. Let G be a quasi-line graph on n vertices and suppose G admits a
canonical interval 2-join ((X1, Y1), (X2, Y2)). Then given a proper l-colouring of G1

for any l ≥ γ′(H2) we can find a proper colouring of G using l colours in O(nm)
time.

Proof. Denote ∆G(V2 ∪X1 ∪ Y1) by D, denote ω′(H2) by W , and denote D−W by
S. Note that l ≥ W + S

2
.

We proceed by induction on l, observing that the case l = 1 is trivial. We begin
by modifying the colouring so that the number k of colours used in both X1 and Y1

in the l-colouring of G1 is maximal. That is, if a vertex v ∈ X1 gets a colour that
is not seen in Y1, then every colour appearing in Y1 appears in N(v). This can be
done in O(n2) time. If l exceeds γ′(H2) we can just remove a colour class in G1 and
apply induction on what remains. Thus we can assume that l = γ′(H2) and so if
we apply induction we must remove a stable set whose removal lowers both l and
γ′(H2).

We use case analysis; when considering a case we may assume no previous case
applies. In some cases we extend the colouring of G1 to an l-colouring of G in one
step. In other cases we remove a colour class in G1 together with vertices in G2 such
that everything we remove is a stable set, and when we remove it we reduce both
W and D (and hence γ′(H2)); after doing this we apply induction on l. Notice that
if X1 ∩ Y1 6= ∅ and there are edges between X2 and Y2 we may have a large clique
in H2 which contains some but not all of X1 and some but not all of Y1; this is not
necessarily obvious but we deal with it in every applicable case.

In some cases we colour G2 mod W . This can be done in O(m) time, and the
removal of any colour class of such a colouring lowers the degree of any vertex in G2
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with at least W −1 neighbours in G2; we use this implicitly along with the fact that
W − 1 ≤ D to show that D drops when we remove such a colour class along with
other vertices provided that we take a vertex in X1 ∪X2 and a vertex in Y1 ∪ Y2.

Case 1. X1 = Y1:

H2 is a circular interval graph and X1 is a clique cutset. We can γ(H2)-colour
H2 in O(n3/2) time using Lemma 5. By permuting the colour classes we can
ensure that this colouring agrees with the colouring of G1. If X1 = Y1 then
ω(H2) = W , so γ(H2) ≤ γ′(H2) ≤ l and we are done.

Case 2. No colour appears in both X1 and Y1, i.e. k = 0:

By maximality of k, ∆G(X1) ≥ |X1|+|Y1|+|X2| and ∆G(Y1) ≥ |X1|+|Y1|+|Y2|;
also note that X1 and Y1 are disjoint. Now, |X1| + |Y1| = W + b for some b.
If b > s then l > D and hence we can extend the l-colouring of G1 to an
l-colouring of G greedily.

Now assume b ≤ 0. Construct the circular interval graph H3 from H2 by
adding every possible edge between X1 and Y1, and γ(H3)-colour H3 in using
Lemma 5. The bound on |X1|+ |Y1| guarantees that ω(H3) = W . Since every
vertex in X1 ∪ Y1 gets a unique colour in this colouring, we can easily paste
the colouring of H3 to the colouring of G1 to reach a colouring of G. By our
bound on ∆G(X1) we have ∆(H3) ≤ D, so γ(H3) ≤ l. Therefore the colouring
we get is an l-colouring of G.

In the remaining case, 0 < b ≤ S. There are nonadjacent x ∈ X1 and y ∈ Y1.
In G1, every colour appears in the closed neighbourhood of either x or y by
maximality of k. Furthermore, the at least W + b colours on X1 ∪ Y1 must
appear in both closed neighbourhoods. It follows that one of these vertices has
at least W−1+ b

2
+ S

4
coloured neighbours, at least max{0, S−2b

4
} of which have

colours not appearing in X1 or Y1; assume that it is x (the same argument
works if it is y). This implies that |X2| ≤ 3S−2b

4
. We take a W -colouring of G2

and then recolour min{|X2|, S
2
} vertices of X2 using new colours. This yields

a colouring of G2 with at most max{0, S−2b
4
} colours appearing in both X2

and Y2; our aim is to paste this colouring onto the colouring of G1 with no
conflicts. To this end we first match these colours appearing in both X2 and
Y2 with some of the max{0, S−2b

4
} colours not appearing in X1 ∪ Y1, then we

match the remaining colours in X2 with some of those appearing Y1; we know
that |Y1| > |X2| since |X1|+|X2| ≤ W and |X1|+|Y1| > W . Similarly we know
that |X1| > |Y2|, so we can now match the remaining colours appearing in Y2
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with some of those in X1. We may still have unmatched colours in G2 that
appear in neither X2 nor Y2, but we can match these with unmatched colours
in G1 to reach a proper l-colouring of G since there are at most W + S

2
≤ l

total colours in G2.

Case 3. k > 0 and |X2|+ |Y2| < W .

We W -colour G2 mod W ; some colour does not appear in X2∪Y2. Furthermore
we can insist that this colour is used in G2 unless G2 = X2 ∪ Y2. Remove the
union of this colour class (which may be empty) and some colour class in G1

appearing in both X1 and Y1 (take one hitting their intersection if X1 ∩ Y1 is
nonempty). Apply induction to the remaining graph, observing that when we
remove the vertices we lower both D and W .

Case 4. k > 0 and |X2|+ |Y2| > W , and there are no edges between X2 and Y2.

Since both |X1|+|X2| and |Y1|+|Y2| are each at most W , |X1∪Y1|+|X2|+|Y2| ≤
2W . Therefore |X1∪Y1| < W and there is some colour class c not seen on this
set. Colour G2 mod W ; some colour appears in both X2 and Y2. Remove this
colour class along with c and apply induction to the remaining graph. Again
our reduced graph has lower D and W .

Case 5. k > 0 and |X2|+ |Y2| > W , and there is some edge between X2 and Y2.

Consider a largest clique C with vertices in both X2 and Y2. Pick one endpoint
of this clique and the vertex beside the other endpoint (outside C) in the linear
interval representation of G2; these two vertices are nonadjacent and are both
in X2 ∪ Y2. Remove these two vertices along with some colour class in G1 not
hitting X1 ∪ Y1 (whose existence is guaranteed as in the previous case), then
apply induction to the remaining graph. Removing the vertices lowers D, and
we take a vertex from every maximum clique in G2 and every maximum clique
in G2[X2 ∪ Y2], ensuring that W also drops.

Case 6. k > 0 and |X2|+ |Y2| = W .

Colour G2 mod W . If there is a colour class hitting neither X2 nor Y2 then
remove it along with a colour class in G1 hitting both X1 and Y1, taking one
that hits their intersection if their intersection is not empty; this lowers both
D and W . Hence we can assume that there is no colour class hitting neither
X2 nor Y2 and consequently none hitting both X2 and Y2.

If there is a colour class in G1 hitting X1 but not Y1, we remove it along with
a colour class in G2 hitting Y2 but not X2; the symmetric argument applies if
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there is a colour class in G1 hitting Y1 but not X1, hence we can assume that
X1 and Y1 get the same colours and therefore have equal size. If there is a
vertex x ∈ X1 \ Y1 with degree less than W − 1 + S

2
in G1, there is a colour

not seen in its closed neighbourhood and we can recolour it; this allows us to
remove its new colour class in G1 along with a colour class in G2 appearing
in Y2 but not X2. When we remove these vertices we lower D, and we can
ensure that we lower W by taking the colour class in G2 containing either the
rightmost vertex of X2 or the leftmost vertex of Y2.

Now we can assume the existence of a vertex x ∈ X1\Y1 with at least W−1+ S
2

neighbours in G1. Since it has at most D = W − 1 + S neighbours in total,
we know that |X2| ≤ S

2
. To complete the colouring of G we first colour X2

with colours not appearing in X1 ∪ Y1. We then colour the remainder of G2

greedily from right to left, starting with Y2. When we colour a vertex v its
coloured neighbours outside X2 form a clique of size at most W − 1 since v
sees all of these vertices, hence v has at most W + S

2
− 1 coloured neighbours

and we can complete the colouring.

These cases cover every possibility, so we need only prove that the colouring can
be found in O(nm) time. If k has been maximized and we apply induction, k will
stay maximized: every vertex in X1 ∪ Y1 will have every remaining colour in its
closed neighbourhood except possibly if we recolour a vertex in Case 6. In this case
the overlap in what remains is k − 1, which is the most possible since we remove a
vertex from X1 or Y1, each of which has size k. Hence need only maximize k once.
We can determine which case applies in O(m) time, and it is not hard to confirm
that whenever we extend the colouring in one step our work can be done in O(nm)
time. When we apply induction, i.e. in steps 3, 4, 5, and possibly 6, all our work
can be done in O(m) time. Since l < n it follows that the entire l-colouring can be
completed in O(nm) time.

5 The structure of quasi-line graphs

In this section we will motivate and state Chudnovsky and Seymour’s structure
theorem for quasi-line graphs, then use it to prove Lemma 6, thus completing the
proof of the main theorem as decribed in Section 2.

Observe that if we are given a multigraph H, to find its line graph L(H) we can
take |V (H)| disjoint cliques corresponding to the vertices of H, where the clique
corresponding to a vertex v has d(v) vertices, each labeled by an edge having v as

11



an endpoint. Then, for each edge e of H in turn, we replace the two vertices labeled
with e by a single vertex adjacent to the union of their neighbourhoods.

To generalize this idea, we now define a method of graph composition that can
be used to generate all quasi-line graphs containing no nontrivial homogeneous pair
of cliques. Given a claw-free graph S with two simplicial vertices a and b, we say
that (S, a, b) is a strip. If S is a linear interval graph on vertices v1, . . . , vn in order,
then (S, v1, vn) is a linear interval strip.

We compose n strips (S ′
1, a

′
1, b

′
1), . . . , (S

′
n, a

′
n, b

′
n) as follows. Let S0 be a graph on

2n vertices in which each connected component is a clique, and whose vertices are
in n disjoint pairs, namely (a1, b1), . . . , (an, bn). For i = 1, . . . , n, let Si be the graph
obtained by taking the disjoint union of Si−1 and S ′

i, making NSi−1
(ai) complete to

NS′i
(a′i) and NSi−1

(bi) complete to NS′i
(b′i), and finally removing the vertices ai, bi,

a′i, and b′i.
Observe that if every strip is a path on three vertices then the composition

operation is equivalent to the construction of a line graph; the middle vertex of each
strip corresponds to an edge in the base graph. Further, if every strip is a clique
C along with ends a and b both with neighbourhood C, their composition is a line
graph; the vertices in C correspond to |C| edges between the same two vertices in the
base graph. Finally, note that the composition operation is commutative in the sense
that if we swap (ai, bi) with (ai+1, bi+1) in S0 and (S ′

i, a
′
i, b

′
i) with (S ′

i+1, a
′
i+1, b

′
i+1)

for some 1 ≤ i < n, the resulting graph Si+1 does not change.
Chudnovsky and Seymour have a structure theorem for quasi-line graphs [3], to

which we append a corollary that is used implicitly in [2]. Note that fuzzy circular
interval graphs and fuzzy linear interval strips are generalizations of circular interval
graphs and linear interval strips, respectively, and are defined in [3]. They are not
needed in this paper.

Theorem 11 (Chudnovsky and Seymour). Let G be a connected quasi-line graph.
Then G is either a fuzzy circular interval graph or a composition of fuzzy linear
interval strips.

Corollary 12. Let G be a connected quasi-line graph with no nontrivial homoge-
neous pair. Then G is either a circular interval graph or a composition of linear
interval strips.

We are now equipped to prove the main structural lemma of this paper, Lemma
6, which is essentially a corollary of Corollary 12.

Proof of Lemma 6. If a quasi-line graph G containing no nontrivial homogeneous
pair of cliques is neither a line graph nor a circular interval graph, it is the compo-
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sition of at least two linear interval strips (S ′
1, a

′
1, b

′
1), . . . , (S

′
k, a

′
k, b

′
k). One of these

strips must not be a clique C joined to ends a and b, and by commutativity of the
composition operation we can assume that it is (S ′

k, a
′
k, b

′
k). Observe that the com-

position of this final strip corresponds to an interval 2-join in G, and it cannot be
trivial otherwise the strip would have the precise structure we have forbidden.

6 Algorithmic Considerations

We can colour circular interval graphs with γ colours in O(n3/2) time by Lemma 5
and we can colour line graphs with γ colours in O(n7/2) time by Theorem 3. We
now show that for any quasi-line graph which is neither a circular interval graph
nor a line graph, we can find in O(n2m) time a quasi-line graph H with fewer edges
than G such that given a γ(H)-colouring of H we can construct a γ(G)-colouring of
G in O(n5/2 + nm) time. Combining these results yields an O(n2m2 + n5/2m)-time
algorithm to γ-colour quasi-line graphs.

There are three types of reductions that we use: removing simplicial vertices,
reducing on a nontrivial homogeneous pair of cliques and reducing on an interval
2-join. If G has a simplicial vertex we can find and remove it in O(nm) time, colour
the remaining graph, then give the simplicial vertex any colour not appearing in its
neighbourhood. If G has a nontrivial homogeneous pair of cliques we apply Lemma
9, removing at least one edge to reach H. If neither of these cases applies then G
contains a nontrivial interval 2-join, in which we apply Lemma 10.

In light of Lemmas 6, 9 and 10, along with the algorithm for finding a nontrivial
homogeneous pair of cliques given in Section 3, our desired result is implied by the
following lemma, which we spend the rest of the section proving. For a vertex v, the
closed neighbourhood of v, denoted N̄(v), is N(v) ∪ {v}. Recall that if G contains
no canonical interval 2-join it contains no nontrivial interval 2-join.

Lemma 13. Let G be a quasi-line graph containing no nontrivial homogeneous pair
of cliques and no simplicial vertex. In time O(n2m) we can find a canonical interval
2-join in G or determine that none exists.

Proof. If a canonical interval 2-join exists (call it ((X1, Y1), (X2, Y2)) as usual), there
are nonadjacent vertices x and y in G such that G[V2] has a linear interval repre-
sentation with x and y at the extreme left and right. We proceed by guessing x and
y, then checking to see if they yield a desired join.

Suppose ((X1, Y1), (X2, Y2)) is a canonical interval 2-join. Since x is not simplicial
both X1 and N(x) \ (X1 ∪X2) are nonempty. Thus N̄(x) has exactly two maximal
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cliques, namely X1 ∪ X2 and N̄(x) \ X1. We can find one maximal clique greedily
in linear time, and having generated one of them, C, we can find the other by
generating a maximal clique in N̄(x) containing some arbitrarily chosen element of
N̄(x) \ C. Thus, X2 is the intersection of these two maximal cliques and there are
two choices for X1. In the same vein we know Y2 and have two choices for Y1. For
each of these four possible choices of (X1, Y1) we first check if we indeed have a
2-join. We check that it is an interval 2-join by adding to G2 vertices x′ and y′ with
neighbourhoods X2 and Y2 respectively along with a vertex z with neighbourhood
{x′, y′}, then checking to see if the result is a circular interval graph. All of this can
be done in O(m) time, so checking every possible x and y takes O(n2m) time.

7 Conclusion

Conjecture 2, if true, will likely be very difficult to prove in general. Proving the
conjecture for claw-free graphs, however, may be substantially easier thanks to the
structural characterization found in the work of Chudnovsky and Seymour [3]. In
terms of promising classes for which the conjecture might be proved with relative
ease, one should also consider the class of even-hole-free graphs – whereas in a
quasi-line graph every vertex is bisimplicial, it was recently proved by Addario-
Berry, Chudnovsky, Havet, Reed and Seymour that every even-hole-free graph has
a bisimplicial vertex [1]. Their main theorem actually states something slightly
stronger, but the idea of constructing any even-hole-free graph by iteratively adding
a bisimplicial vertex may be very helpful for proving the conjecture.
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